We examined prey selection, search distance (measured as km traveled/kill), and spatial use of recolonizing wolves (Canis lupus) in a multi-prey system in northwestern Montana, USA, and southeastern British Columbia, Canada, from 1986 to 1996. Our objective was to explore factors affecting these parameters to better understand wolf–prey relationships of recolonizing wolves. Within white-tailed deer (Odocoileus virginianus) winter ranges, wolves selectively killed elk (Cervus elaphus) over deer. Number of wolves (r = 0.67, P = 0.03), year (r = 0.68, P = 0.02), and possibly human hunter-days/elk harvested (r = 0.55, P = 0.08) were positively correlated with variation in proportion of deer killed by wolves annually. Outside of severe winters, white-tailed deer, elk, and moose (Alces alces) appeared to be equally vulnerable to wolf predation. Search distance of wolves varied by up to 12 times annually. Snow depth (r = 0.73, P = 0.03) and proportion of total kills by wolves that were deer (r = 0.66, P = 0.06) were negatively correlated with the annual variation in the total search distance of wolves. Search distance per wolf was correlated negatively with year (r = 0.66, P = 0.06) and exponentially with hunter-days/elk harvested (r = 0.70, P = 0.04). Space use by wolves may have been in response to local changes in deer abundance. Wolves appeared to select the most profitable prey species. Severe winters and wolf selection for deer, coinciding with a decrease in elk numbers, increased wolf hunting efficiency by reducing search distance. Further research is needed to determine whether reduced search distance equates to increased kill rates by wolves in this system. Based on the time, expense, and difficulty of gathering data on wolf search distance in this sytem, however, we recommend against assessing impacts of wolves on prey via measuring kill rate. Rather, we suggest monitoring impacts of recolonizing wolves by directly assessing cause-specific mortality and recruitment rates of prey species.